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Noise-optimal binary-synapse neural networks 

R W Penney and D Shenington 
Oxford University. Depatment of Physics. Theoretical Physics, I Keble Road, Oxford 
OX1 3NP. UK 
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Abstract We examine the possibility of improving the performance of dismle-synapse n e d  
networks, funclioning as content-addressable memories. by the inclusion of noise in lheir training 
procedure. and study the effects on the dining itrclf. Pattem stability field distributions for 
optimized networks ?.re illusmted for various levels of mining noise. including the noiseless, 
maximally stable. regime. We show that the clipped Hebb rule is optimal in the high Uaining 
noise limit, but lhat simulated annealing canno1 be relied upon to identify a well defined optimal 
network for an arbitmy, finite, training-noise. in contrast to the case for continuous-synapse 
systems. Training by use of a continuous-synapse network, whose synapses ?.re subsequently 
clipped, is also addressed. 

1. Introduction 

Instances of improvements in the performance of neural networks due to controlled 
introduction of noise into their training procedure are becoming more widespread (e.g. Wong 
and Sherrington (1991), Holmstrom and Koistinen (1992). Murray (1991) and Gyorgyi 
(1990)) with particularly beneficial effects being expected when training environment 
parallels operational environment (Wong and Shemngton 1990b). One motivation for this 
strategy is that a network is likely to be better trained by the form of data with which it 
will ultimately deal, albeit possibly imperfect, than with perfect examples of the the desired 
behaviour. Stochasticity in the training data presented to a network of limited adaptability 
also curtails any likelihood that the system will be able to provide an exact representation 
of these untrustworthy examples, but the network is hoped to abstract from its training a 
modus operandi which will allow it to perform well on new, noisy, input dah 

Considering the prototypical neural network function of content addressable memory, 
both memory associativity and retrieval accuracy of optimally adapted networks surpass 
those of fixed leaming rules which may be best only at particular noise levels (e.g. the Hebb 
rule is found to be optimal in the high noise limit) (Wong and Shemngton 1991). However, 
most studies of the training-with-noise procedure have been confined to synaptic networks 
with real-valued synapses (and therefore, in general, connected weight spaces) for which the 
influence of the training noise may act smoothly in any form of annealing within this weight 
space associated with training. For networks having discrete-valued synapses, and therefore 
having highly disconnected weight spaces, the training noise can less readily usher a network 
from an unfavourable region of this space towards a superior region. and might only be 
able to communicate between these domains via vastly inferior states. In the language of 
optimization theory, a training algorithm is much more likely to become trapped in localt 

t Our use of notions of proximity are intended to relate to points between which an iterative leaming algorifhm 
may jump in a small number of steps, or that are close in terms of some Uamming distance. 
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minima of any cost function imposed on the weight space. It is therefore relevant to examine 
in what way the use of discrete-synapse neural networks, which are far more amenable 
to realization than systems having real-valued weights, tarnishes the benefits of a noisy 
training environment We will therefore examine a binary-synapse network functioning 
as an associative memory, this being the system having the least synaptic flexibility, and 
therefore expected to highlight the symptoms of discrete-synapse networks in general. 

For the synaptic networks of concern here, we will assume a McCulloch-Pitts dynamics 
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with the number of neurons, N ,  taken as being large. As discussed by Wong and Shenington 
(1990a). if an ensemble of noise-compted versions of a pattern, 6;. (one of a set of UN 
panems, p E [ 1, . . . , ci N 1) is presented to the inputs of such a network, then the probability 
that a neuron, i, immediately connected to these inputs, acquires the incorrect state after 
updating is given by $ e r f c ( [ m , / J m ] A f ) ,  in which Af = ( l / ~ % ) ~ ~ & @ J i j t , ?  
is the stability field of panern p and m, is the mining overlap, such that p ( S j ( 0 ) )  = 
$(I  + m,Sj(0)(/). Hence the larger the aligning field, Af .  the smaller the chance of 
incorrect updating, and thus the smaller the population of incorrectly updated neumns after 
the first-step dynamics, when an input is presented having overlap m, with one of the stored 
patterns, 6;. Although the ideal network would rather maximize the probability of correct 
asymptotic ( I  -+ CO) retrieval, such a system is in general currently beyond analysis. We 
will therefore focus on the optimization of the first-step dynamics, whose effects are likely 
to be highly significant in determining long-term behaviour (cf Kepler and Abbott 1988). 

Our general approach to this problem will be discussed in section 2; in section 3 the 
possibility of obtaining a well defined optimal network is addressed, and section 4 examines 
the high-training noise limit. In section 5 we consider training a binary network by use of 
a continuous-synapse system. Our conclusions are offered in section 6. 

2. General formalism 

We will treat leaming as a stochastic minimization process, in which, for a given species of 
network, the whole of its synaptic weight space is explored, and properties typical of those 
networks lying in the most favourable regions of this space, according to some imposed 
criteria, are investigated For the large networks with which we will be concerned, these 
average properties are not expected to depend on the exact choice of patterns stored by 
the network, only on their stochastic properties and number. The distribution of pattern 
stabilities, p(A) ,  will be the object of central concem as this concisely provides insight 
into the effects of training on the capabilities of a network. Although the allowed values of 
Af are strictly discrete, for large N the distribution p(A)  becomes quasisontinuous, and 
is equivalent to a function on real A as N + CO. 

Following Gardner and Demda (1988) we will associate a cost function, E = 
E;:, g(AP). with each point in the weight space, and use a Gibbs weighting (e-aE) 
via which networks may be annealed into the minimum cost regions of the weight space 
on taking the limit B + W. Using replica mean field theory, and adopting the replica- 
symmetric ansatz, the field distribution may be obtained in the form 
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where the value of q is chosen, along with the parameter 6 ,  such as to extremize a free 
energy functional G(q, G), as given below: 

+ s [  Dx In 2coshx&] 

(We adopt the standard shorthand Dx = exp(-ix2)dx/&.) A brief outline of the 
derivation of (2.1) can be found in appendix A. We will also have use of the replica- 
symmetric expression for the thermodynamic entropy (S = BZ$(-fi-'Ge.,J) 

As our aim is to maximize the probability of correct first-step update of a noisy input, the 
artifice B should ultimately be removed by taking the limit @ + W. In this limit, the effect 
of using a cost function g(A) = ferfc(BtrA) (i.e. the probability of incorrect update) is 
exactly equivalent to that of g(A) = - erf(AA) (in which we define ptr = m(/q'-). 
The latter choice of cost function is slightly more convenient analytically, so is the form 
that has actually been employed. At finite B the two cost functions are also essentially 
equivalent in their effects. For definiteness we give the definitions of both error functions 

2 "  
erf(x) = - / e-?* dy erfc(x) = e-y2 dy = 1 - erf(x). 

f i o  

The maximally stable network (MSN), in which all patterns are stable states of the neuron 
dynamics, and for which AY > K > 0, may be considered by taking g(A) = .9(K - A), 
and maximising K for the chosen network loading, CY. This represents a noise-free training 
procedure, for which m, = 1. 

So far our approach is very similar to that of Wong and Shenington (199Ob). However, 
the desire to take the annealing temperature, I/,!?, to zero, thereby eliminating all but the 
lowest cost regions of the weight space from the Gibbs averages, highlights the pathologies 
of discrete synapse networks mentioned in the introduction. For any thermodynamic system 
having a discrete phase space the entropy cannot be negative, so on increasing B a change 
of sign of SRS (2.3) would signal the breakdown of the replica-symmetric ansatz (a feature 
familiar from models of king spin glasses, cf Shenington and Kirkpatrick 1975). This effect 
is believed to relate to the energy barriers, which separate near-degenerate regions of phase 
space, becoming infinite in the thermodynamic limit ( N  -+ CO), thereby causing the breakup 
of phase space into disjoint ergodic components. For the neural networks considered here, 
this effect would mean that although a training noise might favour one region of weight 
space over another, any learning algorithm is likely to take infinite time in order to escape 
from a less than optimal region. 

However, the studies of the maximally stable network with binary weights by Krauth 
and M6zard (1989) suggest that the form of replica symmeby breaking (RSB) exhibited by 
binary-synapse networks is of a rather different type from the hierarchical scheme seen in 
spin-glasses (Parisi 1980). The one-step breaking seen in the MSN has the formal effect 
of clamping the effective temperature of all thermodynamic quantities at that at which 
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the replica-symmetric entropy reaches zero, independent of the true annealing temperature. 
Thus, if the replica-symmetric entropy remains non-negative as the annealing temperature 
is taken to zero, then replica-symmetry will remain intact for all physical temperatures. 
Whether or not this condition is fulfilled will depend on the loading of the network, a, 
and one may thereby determine the point at which the network becomes saturated, being 
unable to sustain greater loading. For the MSN, the value of the replica-symmetric order 
parameter 9 (which reflects the mutual similarity of the low-cost networks) is found not 
to approach unity as the network becomes saturated (a condition signalled by the replica 
symmetric entropy reaching O+ at zero annealing temperature), in contrast to the behaviour 
of continuous synapse models (e.g. Gardner and Demda 1988). If, at zero annealing 
temperature, (Y is made to approach its saturation limit, a,, from below, then until ac 
is reached SRS will be positive, finite, and of order No. Given that 9 does not approach 
unity under such circumstances, the number of low-cost networks must be exponentially 
large (so that SW > 0) with these systems being widely dispersed within the weight space 
(because 9 f t  I). That these networks differ in a very significant fraction of their weights, 
makes it implausible that the minima of the cost function, which they represent, could 
lie in a single valley of the energy landscape. This picture is lent weight by the form 
of replica-symmetry breaking observed for this system. Just beyond saturation replica- 
symmetry breaks, indicating that these disparate regions of weight space, each then having 
non-zero energy, become separated by infinite energy bamers.t Although at low annealing 
temperature a single domain would be favoured in terms of lowest cost, the loss of ergodicity 
means that it is almost certainly dynamically inaccessible. This type of pathology would 
encourage caution in taking the limit /? + M in (2.2) and (2.1). 

The techniques used by Wong and Shemngton for the spherical model (in which the 
synaptic weights are constrained only by an overall normalization condition, E, J; = N )  
centred on applying the method of steepest descents to integrals involving eag. This 
strategy would seem ill-advised, a priori, for the present problem, because it relies on 
being able to take the limit /? + M within the replica-symmetric approximation. We 
have therefore adopted a more cautious, numerical, approach. For particular a and m, 
we have numerically extremized G(9. $) (2.2). and varied ,4 in search of the zero of SRS 
(2.3). (We have used an adaptive integration routine, based on a step-size controller for a 
Runge-Kutta differential equation integrator (Press etal 1988). in order to handle the highly 
inhomogeneous integrands in (2.l), (2.2) and (2.3).) According to the results of Krauth and 
MBzard (1989). these B’s would represent a maximum usable B in any simulated annealing 
method of training the network, and would correspond to a minimum possible step-size 
in an iterative learning scheme. Given the conventional interpretation of RSB in terms of 
(exponentially) diverging dynamical timescales, despite the fact that the Gibbsian method 
strictly makes no direct reference to an underlying dynamics, beyond these limits on p 
no improvement in network performance should be expected, for practical purposes, even 
though an optimal network would remain unidentified. These bounds on fi are plotted against 
training overlap, m,, in figure I ,  for various a. The numerical difficulties of calculating these 
values limits us to a maximum p of about 256, and to a small number of data points (shown 
as circles). The curves are rational polynomial fittings to calculated values of In(/?-). 

t The replica-symmey broken order parameters. qa. q1 and m (see appendix A), suggest a number of feahlres of 
the phase space. The disjoin1 regions of this space represenl the pure thermodynamic states constituent to Lhe Full 
Gibbs state. with stale $ having a weight P+. We infer that these regions are each small (because 91 = 1). widely 
sepamed (given that qo - q - 0.6) and numemu (because m = (1 - P $ )  is unity just beyond saturation). 
but not having a population which diverges exponentially in the system size, N (so that the entropy remains zero. 
U) zeroth order in N). 

R W Penney and D Sherrington 
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- - a=O.B 
..... a=l.O 
- a=l.Z 

0.2 0.4 0.6 !O.B 1 
m, 

Flgure 1. Maximum inverse annealing temperatures, p ,  and minimum annealing temperatures, 
T = p-', against mining overlap, m,. for various storage ratios, a. 

For the MSN, Homer's explicit analysis of the dynamics of leaming (Homer 1992) 
shows that ergodicity breaking can occur even before the replica-symmetric entropy reaches 
zero. That the C U N ~ S  of figure 1, when extrapolated to m, = I (where the error-function 
cost-function resembles that of the MSN), appear to have finite pmx rather than the infinite 
p allowed for an MSN in the Gibbsian approach for Q c 0.83 (Krauth and M6zard 1989), 
would suggest that figure 1 might be at least indicative of the onset of dynamical ergodicity 
breaking. If real dynamical timescales do not diverge at Bmar then kar must surely represent 
an upper bound for the onset of practical difficulties. 

Having obtained these bounds on i3, one may proceed to examine the distribution of 
pattern stabilities produced by the network. Some illustrative curves of p ( A )  are shown in 
figure 2 and figure 3. In calculating these, where possible the appropriate ansx has been 
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Figure 2 Siability field distributions for various a, all 
at m, = 0.9. Successive curves are venically offset by 
0.25. by 0.25. 

Figure 3. Stability field distributions for various m,. 
all a1 a = 0.4. Successive curves are veRically offset 
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employed, although beyond = 256 we use f i  = 256 owing to numerical difficulties. 
Where forced to limit fi  in this way, investigation of a number of choices of smaller for 
a given a and m, suggests that the distributions obtained would not change significantly if 
j3 was increased. 

The field distributions in figure 2 exhibit the same sacrificial storage effects as are seen 
in the spherical model (Wong and Sherrington 1991). whereby the majority of patterns are 
given positive stability at the expense of a small fraction of patterns being unstable, i.e. 
having A' -= 0. However, the restriction to finite annealing temperature means that p ( A )  
is always continuous, and no disjoining of the distributions for stabilized and sacrificed 
patterns occurs. Reducing the network loading facilitates stabilization of all patterns, as 
reflected in figure 2. 

On approaching m, = I ,  one would expect p ( A )  to approach that of the maximally 
stable network. Comparison of the mi = 0.99 curve in figure 3 with those typical of 
a binary MSN (shown in figure 4) reveals qualitative similarity, but fitr - 5 is far from 
infinite, so close quantitative agreement should not be expected. (We note in passing that 
the aligning-field distributions for the spherical MSN (Kepler and Abbot 1988, Gardner 1989) 
are markedly dissimilar to those of the binary network, consisting of a &function at A = K, 

and a purely Gaussian tail beyond.) On decreasing the training overlap the cliff in p ( A )  
shallows, and the distribution becomes more rounded, appearing Gaussian in form towards 
m, =0.1. 

R U' Penney and D Sherrington 

Figure 4. Pattern stability field distributions for maximally-stable (noiseless) haining, for K = 0 
a n d K = 2 .  

In view of the observation made in Wong and Sherrington (1990a) that the training 
cost function in the limit m, + 0 reproduces the Hebb rule, with its associated Gaussian 
distribution of pattem stabilities, one may wonder what this limit corresponds to for the 
binary-synapse network, for which a true Hebb rule is obviously inadmissible. The natural 
suggestion would be that this limit would reproduce the clipped Hebb rule (van Hemmen 
1987), for which Jij = s g n ( ( l / m ) C , e / C , ? ) .  This training rule again produces a 
Gaussian distribution of pattem stabilities, according to 
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Graphs of p ( h )  for m, = 0. I do typically appear Gaussian in character (cf figure 3). and in 
order to examine how closely these might correspond to (24) we have calculated cumulant 
averages over the experimental distributions. For a Gaussian distribution, only the two 
lowest order cumulants are non-trivial, in general. Comparisons of these cumulants, for 
various a, are given in table 1, and the agreement is seen to be encouraging. It can be 
shown to become blatantly less so as m, is increased. 

If one neglects the condition that SRS (2.3) should remain positive if G ( 4 . 6 )  (2.2) is 
to be valid, then extremising G(q. +) for increasing /3 suggests that the order parameter q 
would approach unity in the limit /3 + 03, for all (Y and m,. This observation facilitates 
two analyses presented below. In view of the numerical inaccessibility of some regions 
of figure 1, and the associated possibility that there might actually be choices of a and 
m, which allow zero annealing temperature to be reached, we have hied to analyse, more 
directly, the replica-symmetric entropy (2.3) in the limit /3 -+ M. If SRS should remain 
positive in this limit, our method would be selfconsistent, and indicate the accessibility of 
a well defined optimal network. A negative limit would vitiate our approach, and would 
suggest that zero annealing temperature is inaccessible under the relevant conditions. (The 
examination of the local stability of the replica-symmetric saddle point, cf de Almeida and 
Thouless 1978, is believed to be a less reliable indicator, for binary-synapse networks, of 
the onset of the replica-symmetry breaking that would invalidate our methods, cf Krauth 
and Mkzard 1989). 

Table 1. Cumulant average of A, over p(A),  for various loadings and for small m,. along with 
these quantities far the clipped Hebb rule (EH). All resulu are bared on calculations at B = 256. 

e = 0.2 e = 0.4 0 = 0.6 

m, = 0.1 CH m. = 0.1 CH m, = 0.1 C H  

CI 1.7749 1.7841 1.2583 1.2616 1.0283 1.0301 
cz 0.9429 1 0.9703 1 0.9799 I 
c3 -0.0410 0 -0.0324 0 -0.0276 0 
c4 0.0064 0 0.0042 0 0.0031 0 
C5 -0.0039 0 -0.0002 0 0.0004 0 
c6 -0.0116 0 -0.0033 0 -0.0018 0 

U = 0.8 0 = 1.0 

m, = 0.1 C H  m, = 0.1 EH 

CI 0.8909 0.8921 0.7971 0.7979 
c1 0.9848 1 0.9878 1 
c1 -0.0245 0 -0.0222 0 
CI 0.0024 0 0.0020 0 
CI 0.0006 0 0 . m  0 
CI -0.0012 0 -0.0010 0 

3. The accessibility of zero annealing temperature 

For the noise-optimal spherical model (Wong and Shenington 1990b), in the limit p -+ w 
the quantity /3(1 - q )  is observed to remain finite, indicating that the angular diameter 
(- cos-lq) of the lowest cost region of weight space decays as a power law in the 
annealing temperature. It would seem reasonable to expect a similar behaviour to be 
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seen in the binary model, if the annealing temperature can be reduced to zero without 
ergodicity breaking. We therefore adopt, as an ansatz, limp+,,9(1 - q )  = y. Using 
this one may apply the method of steepest descents to the e - p g  integrals in (2.2) etc. 
having scaled y by JB, following Wong and Shenington (1990b). However, it is found 
necessary to know slightly more about the asymptotic behaviour if the entropy (2.3) is to 
be calculated. By including the first COlTections in ,9-' to y .  4 and the integrals in (2.2) 
as ,9 4 CO, one may generalize the methods of Wong and Shenington to allow calculation 
of the replica-symmetric entropy, to zeroth order in p-' .  Making use of the expansion 

R W Penney and D Sherrington 

j D* In(2 c;h a x )  

one may determine the asymptotic character of the entropy to be 

SRS 2 D x  ( x y ' f i  - 1nf"(y*)) " S  
in ,which 

f (y)  = $yz - g(yf i  - x )  and, for each x ,  y* = (y : f ( y )  = inff) . 
Having eliminated < from (2.2), using (3.1), the condition determining q, and hence y. now 
becomes 

(3.3) 

We have examined (3.2) both analytically (towards small, fixed, mf) and numerically. 
in search of choices of y and m, which make SRS( ,~  + CO) positive, but have found only 
negative values. Iterative root-searching using Newton's method also failed to converge. 
The general trend of the Bmar CUNS in figure 1 would seem consistent with this lack of 
success. 

Rather than retaining a fixed training overlap as the annealing temperature (0-l) is 
reduced, the following section shows that if m, 3 0 as ,9 + CO. zero annealing temperature 
can be attained without ergodicity breaking. 

4. The clipped Hebb rule limit 

We have tried to show analytically that the limit m, + 0 reproduces the distribution of 
pattem stabilities associated with the clipped Hebb rule. Assuming that m, is sufficiently 
small, one may approximate the cost function g(A) = -erf&A) by the first term in 
its Maclaurin expansion, g(A) N -(2/J??)Bf,A. In order that higher order terms are 
negligible, self-consistency of this approximation will require ,9# << 1, i.e. that the training 
overlap decreases with annealing temperature, together with /3Br >> I .  (The less restrictive 
conditions on fit, considered in the previous section, are seen to lead to ergodicity-breaking.) 
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In the low temperature limit, we again expect the following general trends; q -+ 1, 
B(1 - q )  -+ y.  -+ 00. Once more performing asymptotic analysis on (2.2). making 
use of the (3. I), one may arrive at the following properties: 

I 2 7r2 

sRs - 

We recognise (4.3) as identical with pcH (2.4). Therefore it would appear that, provided 
nit approaches zero sufficiently quickly as p + 00, the replica-symmetric entropy remains 
positive, and the the clipped Hebb rule is reproduced by the training cost function. The 
close agreement between this limiting behaviour and that of the optimal network at m, = 0.1 
(and B = 256) implies that the clipped Hebb rule is already performing well at this noise 
level. However, it is clear that even though simulated annealing might be successful under 
such circumstances, being iterative it could scarcely compete with the, directly prescriptive, 
clipped Hebb rule. 

5. Training using real-valued synapses 

Having indicated that simulated annealing cannot be relied upon to produce an optimal 
binary-synapse network, one might wonder whether a viable network can be constructed 
from a companion network having real-valued weights, algorithms for whose construction 
are more accessible (e.g., for the noiseless regime, AdaTron (Anlauf and Biehl 1989) etc). 
The most obvious way of reducing a real-valued synapse to a binary-valued quantity is 
simply to take Jjj = sgn(J;:Sl), an operation that takes the Hebb rule into the clipped Hebb 
rule, for example. As an illustration that this means of training a binary system is in no way 
favourable, we have examined the effect of this operation on a maximally stable network, 
representing a n o i s e k e  training. 

We imagine that, for a given neuron, the synaptic weights connecting to this neuron are 
constrained only by an inconsequential (spherical) normalization constraint, cj J$ = N, 
and that choices of these J's  are sought compatible with the maximally stable rule. This 
learning rule has been widely studied, particularly following the seminal work of Gardner 
(1987, 1988). If the parameter K is maximized for a given loading, a, consistent with being 
able to store the panems, one obtains a well defined choice of weights, which may then be 
clipped and used to form a binary-synapse system. For a network constructed in this fashion 
we calculate the resulting distribution of the stabilities of the padems originally embedded 
by the parent system. This distribution may be obtained by a simple generalization of the 
methods of Kepler and Abbott (1988) and Gardner (1989); an outline of the steps in this 
derivation is given in appendix B. 
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(The subscript ‘cM’ refers to ‘clipped MSN’.) Whilst (5.1) is believed correct for all positive 
values of K ,  for the range of this parameter for which it is reasonable to obtain a passable 
binary model, this expression may be simplified considerably. It would certainly be 
optimistic to expect this method of training to produce worthwhile results for a close to, 
or beyond, the capacity limit of this system, namely a = 0.83. This means that K should 
be chosen greater than about 0.6, which value produces a storage capacity of a = 0.84 for 
underlying spherical model. 

For ‘large’ positive K one may simplify both (5.1) and the Gardner formula linking U 
to K (giving K - a-’/2). This yields 

R W Penney and D Sherrington 

which expression is seen to resemble that for the clipped Hebb rule (2.4). (For K N 1.0 
this approximate form of p c ~  is already representative of (5.1), although for positive K 
its mean is slightly greater than that of the true distribution.) It would appear from this 
comparison that training a binary network by taking a trained spherical MSN, and clipping 
its synapses produces little better typical stabilization of the patterns than the use of the 
clipped Hebb rule, whose implementation is far easier. So, even with noise-free training, 
this method of realising a binary-network would not seem promising in isolation. Given 
that on introducing progressively more noise into the training procedure the clipped Hebb 
rule becomes genuinely optimal, there seems little reason to expect that a clipped spherical 
MSN would eve1 excel over the former rule if it does not do so for noiseless training. 

6. Conclusion 

We have investigated the application of training noise to neural networks having discrete- 
valued synapses, and found effects not observed in continuous synapse systems. Our results 
imply, on assuming the novel form of replica-symmetry breaking seen in binary-synapse 
networks, that a search for a unique noise-optimal network using simutated annealing 
cannot, for practical purposes. succeed (except under the very restrictive conditions of the 
clipped Hebb rule limit), even with a static cost-function (representing annealed noise, in the 
terminology of Wong and Shemngton (1991)). This thermodynamic approach suggests that 
disjoint regions of weight space exist, containing near-optimal networks, meaning that any 
arbitrarily started training algorithm is unlikely to reach the optimal network, or converge 
properly, if applied to a large system. 

Our approach is in some ways dual to that of Homer (1992), who examined the dynamics 
of learning in the binary perceptron, for the maximally stable rule. The dynamic mean- 
field theory used by Homer involves taking the limit of large system size (N --+ 00) 

before examining the long-time learning behaviour ( t  --f CO). The use of the Gibbs 
formalism represents the long-time limit being taken first, whereafter the thermodynamic 
limit (N -+ a)) is taken. Homer shows that, even for the MSN, the annealing method cannot 
be expected to converge to the result of the Gibbsian method even within those limits where 
Krauth and Mtzard find replica-symmetry to remain intact. (Although there remains some 
scepticism about the validity of the one-step RSB scheme proposed, evidence in support of 
the results of Krauth and Mizard is not lacking; e.g. Krauth and Opper (1989). Demda ern! 
(1991).) The present results suggest that diverging timescales can occur even for very small 
training noise (mr --f 1). and hence that the MSN may represent a very special learning nile. 
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For the spherical model, although a discontinuity in behaviour is seen between m, = 1- 
and m, = 1, the effects of ergodicity breaking seem less significant (Wong and Shenington 
1991). 

These investigations, along with those of Homer, although strictly limited to modelling 
training by simulated annealing, suggest that learning in discrete-synapse systems is far more 
difficult to effect without a prescription (such as the clipped Hebb rule) than in continuous- 
synapse systems. The method of exact ennumeration, as used by Krauth and Opper (1989) to 
find, numerically, the storage capacity of the binary perceptron, would currently seem to be 
the most reliable method of optimizing such networks. Clearly this is a highly undesirable 
method for large systems, as the time required for training grows exponentially with system 
size. Although our results do not discount the possibility that simulated annealing might 
find the optimal network, or a close substitute, given enough computer time, the effects 
of the ergodicity breaking that we have found will be associated with diverging timescales 
for the annealing schedule. If these diverge exponentially in the system size, N ,  then the 
advantages of this approach over exact ennumeration may quickly be lost. 

The use of genetic algorithms might ultimately prove valuable. Although the algorithm 
used by Kohler (1990) showed considerable advantages over an iterative scheme for training 
an MSN, Kohler implied that his algorithm was far from being ideal. However, given 
the existence of disparate near-equivalent solutions (suggested by the form of replica- 
symmetry breaking seen in binary-synapse systems) it would seem that some form of genetic 
optimization process would offer the most hopeful means of training such systems. The 
topology of the weight space of a discrete-synapse network is most naturally provided by 
the dynamics of the learning process. Simulated annealing, in conventional realizations, 
provides a Hamming metric on the weight space, which means that the near-optimal 
solutions, which the learning process will aim to choose between. cannot be kept within 
the field of view of the algorithm if convergence requires searching the locality of each 
near-optimal solution. The crossing of genotypes allows association of points separated 
by large Hamming distances, and with an appropriate genome might allow more objective 
comparison of possible solutions, without requiring the whole of the weight space to be 
explored, as for the method of exact ennumeration. 
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Appendix A 

We will discuss some aspects of the derivation of (2.l), with particular concem to the one- 
step replica symmetry breaking which besets this object at low annealing temperature. A 
system of N neurons, joined by asymmetric weights, chosen such as to optimally stabilize 
U N  states Sj = e;, will be considered. Choices of the weights, J j j .  are influenced by a 
cost function c, &'(Ay), where A/ = c.f'J. f?  is the stability of pattem U on site i. I f  ' 1 1  
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Using replicas to perform averages over the choice of stored patterns, following Gardner 
(1989). one may write p ( A )  in the form: 

R W Penney and D Sherrington 

The f i  and a in the Kronecker 8 refer to an arbitrary choice of pattem and replica. 
Introducing various Fourier decompositions of unity 

in order to extract the patterns from within the cost functions, the pattern average may 
be performed. For large N .  the 2: integrals are dominated by the regions - 0 and 
2: - K. With suitable translation and scaling of these integrals, the summations over yi 
may be converted to integrals, and the Kronecker 6 in (A.l) replaced by a Dirac &function, 
provided p ( A )  is re-interpreted as being a continuous distribution. Inwoducing some further 
identity operators, a la Gardner, one may reduce (A.l) to an integral representation of the 
form; 

x exp - xqb 'zbzc)B(A - Y")) ( bcc 
(A.3) 

in which 

(cf Krauth and M 6 z d  1989). Invoking mean-field theory, one may replace the qbc 
and Gbc integrations by the values of these parameters at the extremum of the action 

theory is exact. It is usual to assume, by way of an ansatz, that these order-parameters 
are replica symmetric, i.e. qbc = q and Gk = iG Vb c c, whereby one may obtain (2.l), 
(2.2) and (2.3). As a move towards improving this idealization, one may adopt a one-step 
symmetry breaking, 

G = ( icb, ,q  be q -bc + aGo({qb')) + C1((Gb'J)). In the limit N + 00 this mean-field 
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where 

I ( x )  =infly E Z :  y 2 x 1 .  

On taking the limit n -+ 0 this produces a distribution for the mutual overlaps of the various 
ergodic components given by 

P ( q )  = ms(q - 40) + (1 - W ( q  - 41). (A.5) 

(For m m  details of this procedure see, e.g., M6zard et a1 1987.) However, for the 
maximally stable network (where g(A) = 8 ( ~  - A)). on seeking the extremum of the 
one-step broken free-energy functional numerically, Krauth and Mkzard found either that 
the replica-symmetric result was reproduced (41 = qo and 41 = 40) or that 91 -+ 1 and 
$1 -+ CO. They therefore investigated the effect of assuming q, = 1 in the free-energy 
functional, which simplifies considerably in this limit (directly associated with 4 --f CO) 

(A.@ 

The condition determining m, that G& should be extremized, then reduces to the constraint 
that the replica-symmetric entropy should vanish 

(A.7) 

and hence that mp = pc = constant outside the domain of genuine replica-symmetry. This, 
together with (AS), suggests that on reducing the annealing temperature, a unique domain 
becomes favoured amongst the many disjoint ergodic regions of weight space, although all 
domains will have finite energy. Thus Krauth and Mkzard were led to adopt the condition 
of vanishing zero-temperature replica-symmetlic entropy as that determining the storage 
capacity, a,. The maximum of this quantity (obtained for K = 0 )  was found to be 0.833. 

These algebraic results of the substitution 41 = 1 can be shown to be identical for all cost 
functions g(A), with the same effective temperature, mp, also appearing in (2.1). We will 
assume that the same form of replica symmetry breaking holds for a general cost function, 
not solely the 8-function used in Krauth and Mkzard (1989). The numerical difficulties of 
checking this assumption would be considerable, and for a cost function of the form used 
in this paper, unlikely to readily produce convincing evidence. 

G"' Rse(qo, 40, 1. CO. m, B )  = (l/m)GRs(qo, m2&, mB) .  

sRS(q03 m 2 h  mb) = SRS(~, 4, mb) = 0 

Appendix B 

An overview of our derivation of (5.1) will be given. In view of the less pathological 
nature of networks having connected weight spaces, we have adopted a micro-canonical 
optimization procedure, in which only that region of the weight space which stabilizes the 
selected patterns needs be considered. The distribution p c ~ ( A )  may then be obtained as an 
average over this region, but on saturating the parent network, thereby shrinking this region 
essentially to a point, p c ~  is expected to become the distribution of stabilities produced by 
fonning a binary network from a unique parent. Our starting point is 
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Following Gardner (1987, 1988) we introduce identity operators, in the form 1 = n,.b Jdy: &(YE - A:”), taking Fourier representations of the &functions. Use of an 
analogous procedure for the single quantity 5; E, sgn(J;)c; seems to be simplified by 
taking an entire set of identity operators, 1 = n,,b Xu; &,(U:-$ E, sgn(Jp)e / ) .  Having 
extricated the pattems, cr, from within the 8-functions and the Kronecker 8 in (B.1)- one 
may perform the pattem average. (Analogously to the calculation of p ( A ) ,  one may replace 
the summation over U; by an integral, as N becomes large.) Thus three. quantities unfamiliar 
from previous calculations emerge, namely 

R W Penney and D Sherrington 

in addition to the standard qbc = (I/N) E, J p J f .  Yet further partitions of unity are 
introduced to cater to these terms. and replica-symmetric mean-field theory is ultimately 
invoked in the limit N -+ 00. Thus one obtains p c ~ ( A )  in the form 

,drb dub 
p c ~ ( A )  = “-0 lim fi! dy Zxduh2;;exp(iybrb-$(zb)Z+iubub- ~ ( ~ ~ ) ~ - z ~ u ~ s ) B ( y ~ - ~ )  

b= I 

x exp  -Czhzcq-Cub U r - zbubt)  6(A - U”) ( b<c b<c 
(B.3) 

in which [q ,  I ,  s, t ]  are chosen, along with ( E ,  4,  i ,  .?, 9, so as to extremize, in the limit 
n -+ 0, the free-energy functional 

G ( c , s , S ^ , q , + , r , i , t , a  = ( n & - n s s ^ + + ( l  - n ) q + + f n ( l  - n ) r i + n ( l  - n ) t i  

a c o ( q . r . s , t )  + G~(& , i , ; ,S^ , f i )  (B.5) 

within which 

Go(q, r. s. t) = In h b  L - 1 ( ~  1 b Z  ) + iubub - ~ ( u  1 6 2  ) - zbubs) 

J h J c i  + C s g n ( J b )  sgn(Jc)i + J b  
bce b#c 

Gardner’s calculation of the capacity of the spherical model (Gardner 1988) involved a very 
similar form of free-energy functional, except that all the parameters Is, i, r, i .  I ,  9 were 
absent. However. on simplifying Go, one finds that this object is actually independent of 
( r . s ,  t ) ,  and is therefore identical to the corresponding function for Gardner’s model. This 
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simplification is entirely natural, given that these order parameters had no bearing on the 
thermodynamics of the spherical model simply storing patterns. As a consequence of this, 
one may deduce from the saddle-point conditions a c / a r  = aG/as = aG/at = 0 that the 
conjugate order parameters {F. ?, i) are all zero. Therefore, it is only necessary to evaluate 
GI  to first order in the latter quantities, so that the values of { r ,  s, t ) ,  the latter two of which 
are needed in pCM(A), may be obtained via the conditions (aG/aF)I,, = (aG/ai ) l j=o  = 
(aG/af) l , ,  = 0. With this reduction, G I  may be evaluated thereby again revealing close 
similarity with Gardner’s analysis, but in addition giving expressions for the new order 
parameters 

-- 
t = ( Jj . sgn(Jj))c = q 

(The notation (f), denotes an average of f over accessible regions of the spherical weight 
space, followed by a disorder average, over the choice of stored panems.) As we will 
be interested in saturating the spherical model which underlies the derived binary model, 
we take the limit q = (q’): + 1, in which limit the couplings become closely-defined 
(without any of the problems that plague the true binary model in such a limit). This limit 
reproduces the Gardner formula linking K and ac: 

as would have been expected. In addition, the x-integration in (B.4) can be split into three 
segments: 

(i) the section from x = -CO to x = - ( K  + iks) produces the first term in (5.1) on 
inserting asymptotic forms for the error functions: 
(ii) the range x = -(K + ikt) to x = +m analogously yields the second term in (5.1): 
(iii) the remaining section x E (-(IC + iks), - (K + i k t ) )  produces a contribution that 
vanishes in the limit q + 1. 

Thus one obtains (5.1). (It is our assumption that the x-integration contour may be distorted 
as necessary without crossing any poles of the integrand.) 
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